頻率是單位時間內某事件重複發生的次數,在物理學中通常以符號或表示。採用國際單位制,其單位為赫茲(英語:Hertz,簡寫為Hz)。設時間內某事件重複發生次,則此事件發生的頻率為赫茲。又因為週期定義為重複事件發生的最小時間間隔,故頻率也可以表示為週期的倒數:
其中,表示週期。
為了方便起見,較長較慢的波,像海洋表面的面波,通常是以周期來描述其波動性質。較短較快的波,像聲波和無線電波,通常是以頻率來描述其波動性質。
在國際單位制里,頻率的單位——赫茲 (英語:Hertz,簡寫為Hz),是以德國物理學家海因里希·赫茲(英語: Heinrich Rudolf Hertz , 1857年2月22日-1894年1月1日)而命名[1]。1赫茲(Hz)表示事件每一秒發生一次。
其他用來表示頻率的單位還有:旋轉機械器材領域採用的傳統衡量單位為每分鐘轉速(rpm)等。在醫學裡,心率以「次/分鐘」(bpm)為單位[2]。
通過數算在某時間間隔內重複事件發生的次數,就可以獲得這重複事件發生的頻率:
例如,假若在15秒內發生了71次,則頻率為
另一種方法是測量這重複事件發生設定次數所需要的時間間隔[3]。不過此方法在計數次數介於零和一次之間時,計數次數會有隨機誤差,會造成計算頻率會有Δf = 1/(2 Tm)的誤差,
其中
其誤差會隨著頻率而遞減,因此信號在低頻率,而取様到的次數又小,就會出現類似的問題。例如每秒量測一次頻率0.5Hz的信號,量到的次數會在一次和零次之間變化,需要取平均後才能得到真實的頻率。
頻閃觀測器可以用來測量旋轉物體或振動物體的頻率。頻閃觀測器會發射出重複地強烈閃光(頻閃光),其頻率可以用校準計時電路來調整。將頻閃光對準於旋轉物體或振動物體,然後調整閃爍頻率。當頻閃光的頻率等於旋轉頻率或振動頻率時,這物體會在每次頻閃光閃爍的時候,正好完成一個循環,回到同樣位置。所以,這物體看起來好像固定不動[4]。這物體的運動頻率可以從頻閃觀測器的讀出裝置獲得。請注意,假若這物體的運動頻率是閃爍頻率的整數倍數,則這物體也會看起來好像固定不動。
頻率計數器是一種電子儀器,可以用來測量較高頻率。頻率計數器專門測量重複性電子信號。它使用數位邏輯和準確石英計時器來數算在某時間間隔內的信號重複次數。不具有電子屬性的循環過程,像轉軸的旋轉速率、機械振動、聲波,可以用換能器轉換為重複性電子信號。
假若電磁信號的頻率超過頻率計數器的適用域,則可以使用外差法。首先,在未知頻率的附近,選擇一個已知頻率的參考信號,然後,使用二極體將兩個信號混雜在一起,這會造成一個混雜拍信號,其頻率為已知頻率與未知頻率的差值,稱為拍頻或差頻,可以用頻率計數器測量[5] 。當然這方法只能測量兩個信號的頻率的頻差,要獲得未知頻率,必須使用其他方法先知道參考信號的頻率。欲想測量更高頻率,必須經過幾個階段的外差法。最新研究已經將這方法推展至紅外線和可見光頻率。
衡量聲音、電磁波(例如無線電波或者光)、電訊信號或者其他波的頻率時,表示每秒波形重複的數量。如果波是聲音,頻率衡量音符的特性。
頻率與波長成反比例關係。頻率等於波的速度除以波長:
在真空中電磁波的速度是真空中的光速,方程式就變成:
當波從一種介質傳入另一種介質,頻率不變,而波長和相速度會變[6]。
若一波源和觀察者之間有相對運動時,觀察者接受到波的頻率與波源發出的頻率會不相同,此現象稱為都卜勒效應[7],例如當警車靠近觀察者時,觀察者接收到警車的頻率會比警車發出的頻率要高。
輻射能(英語:radiant energy)是電磁波傳播的能源。太陽或電光源都是輻射能的源頭。人類的光學感測器(眼睛)能夠分辨的光波稱為可見光,是由幾種顏色(紅、橙、黃、綠、藍、靛、紫)組成;其中每一種顏色都有特定的頻帶(英語:frequency band)。可見光在整個電磁輻射的頻譜中只佔有一小部分。紫外線(UV)的波長小於可見光,無法以肉眼看到;又紅外線(IR)的波長大於可見光,也必須利用夜視鏡和其他熱感測設備才能觀測得到。大於紫外線波長的電磁輻射有X射線和伽瑪射線。小於紅外線頻率波長的有微波和無線電波,頻帶為兆赫和千赫,以及頻帶為毫赫和微赫的自然波。頻率為2毫赫的波,其波長大約等於從地球到太陽的距離。微赫波的波長大約為0.0317 光年。奈米赫波的波長大約為31.6881光年。
按照波長長短,從長波開始,電磁波可以分類為電能、無線電波、微波、紅外線、可見光、紫外線、X-射線和伽馬射線等等。普通實驗使用的光譜儀就足以分析從2 奈米到2500 奈米波長的電磁波。使用這種儀器,可以得知物體、氣體或甚至恆星的詳細物理性質。這是天文物理學的必備儀器。例如,因為超精細分裂(英語:hyperfine splitting),氫原子會發射波長為21.12公分的無線電波[8]。
人類眼睛可以觀測到波長大約在400 奈米和700 奈米之間的電磁輻射,稱為可見光[9]。
聲音是傳播於固體、液體、氣體、電漿的振動,尤其是指那些人耳能感受到的頻率的振動。對於人類,聽覺頻率範圍限制在大約20赫茲到2萬赫茲(20千赫)之間,上限通常會隨著年齡而減低。其他物種有不同的聽覺頻率範圍。例如,有些犬種能感覺到高至45,000赫茲的振動[10]。聲音是被許多物種用來做為感覺危險(英語:detect danger)、導航、掠食和通訊的主要感官之一。
凡是被詮釋為聲音的機械振動,都能夠穿越處於各種物態的物質。這些能夠傳播聲音的物質稱為介質。聲音不能傳播於真空。
周期性的信號均有其對應的頻率,而且可以透過傅立葉級數轉換為不同頻率弦波的和。而大部份信號(週期性或非週期性)可以用傅里葉變換轉換成在不同頻率下對應的振幅及相位,此種考慮信號或系統頻率相關部份的分析方式稱為頻域。
許多物理元件的特性會隨著輸入訊號的頻率而改變,例如電容在低頻時阻抗變大,高頻時阻抗變小,而電感恰好相反,高頻時阻抗變大,低頻時阻抗變小。一個線性非時變系統的特性也會隨頻率而變化,因此也有其頻域下的特性,頻率響應是輸入振幅相同,頻率不同的弦波,將各頻率輸出的振幅和相位相對頻率繪製成圖,可以顯示一個系統頻域下的特性。
有些系統的定義是以頻域為準,例如低通濾波器只允許低於一定頻率的訊號通過。
歐洲、非洲、澳洲、南美洲的南部、亞洲的大部分區域、俄國,這些地區的交流電頻率都是50 Hz(接近於科學音調記號法下的音符G1,是低三個八度的G);而北美洲、南美洲的北部、台灣,這些地區都使用60Hz交流電[11](大約在音符B♭1與B1之間)。依據在不同地區所使用的交流電頻率,在進行錄音的同時所紀錄下來的交流聲[12]可以顯露出進行錄音的位置,例如在歐洲或北美洲。
|isbn=
光學頻譜,簡稱光譜,是複色光通過色散系統(如光柵、稜鏡)進行分光後,依照光的波長(或頻率)的大小順次排列形成的圖案。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長範圍內的電磁輻射被稱作可見光。光譜並沒有包含人類大腦視覺所能區別的所有顏色,譬如褐色和粉紅色。條目顏色解釋了這種現象的原因。
複色光中有著各種波長(或頻率)的光,這些光在介質中有著不同的折射率。因此,當複色光通過具有一定幾何外形的介質(如三稜鏡)之後,波長不同的光線會因出射角的不同而發生色散現象,投映出連續的或不連續的彩色光帶。
這個原理亦被應用於著名的太陽光的色散實驗。太陽光呈現白色,當它通過三稜鏡折射後,將形成由紅、橙、黃、綠、藍、靛、紫順次連續分布的彩色光譜,覆蓋了大約在390到770奈米的可見光區。歷史上,這一實驗由英國科學家艾薩克·牛頓爵士於1665年完成,使得人們第一次接觸到了光的客觀的和定量的特徵。
在一些可見光譜的紅端之外,存在著波長更長的紅外線;同樣,在紫端之外,則存在有波長更短的紫外線。紅外線和紫外線都不能為肉眼所覺察,但可通過儀器加以記錄。因此,除可見光譜,光譜還包括有紅外光譜與紫外光譜。
按產生方式,光譜可分為發射光譜、吸收光譜和散射光譜。
有的物體能自行發光,由它直接產生的光形成的光譜叫做發射光譜。
發射光譜可分為三種不同類別的光譜:線狀光譜、帶狀光譜和連續光譜。線狀光譜主要產生於原子,由一些不連續的亮線組成;帶狀光譜主要產生於分子由一些密集的某個波長範圍內的光組成;連續光譜則主要產生於白熾的固體、液體或高壓氣體受激發發射電磁輻射,由連續分布的一切波長的光組成。
在白光通過氣體時,氣體將從通過它的白光中吸收與其特徵譜線波長相同的光,使白光形成的連續譜中出現暗線。此時,這種在連續光譜中某些波長的光被物質吸收後產生的光譜被稱作吸收光譜。通常情況下,在吸收光譜中看到的特徵譜線會少於線狀光譜。
當光照射到物質上時,會發生非彈性散射,在散射光中除有與激發光波長相同的彈性成分(瑞利散射)外,還有比激發光波長長的和短的成分,後一現象統稱為拉曼效應。這種現象於1928年由印度科學家拉曼所發現,因此這種產生新波長的光的散射被稱為拉曼散射,所產生的光譜被稱為拉曼光譜或拉曼散射光譜。[1]
按產生本質,光譜可分為分子光譜與原子光譜。
在分子中,電子態的能量比振動態的能量大50~100倍,而振動態的能量又比轉動態的能量大50~100倍。因此在分子的電子態之間的躍遷中,總是伴隨著振動躍遷和轉動躍遷的,因而許多光譜線就密集在一起而形成分子光譜。因此,分子光譜又叫做帶狀光譜。
在原子中,當原子以某種方式從基態提升到較高的能態時, 原子內部的能量增加了,原子中的部分電子提升到激發態,然而激發態都不能維持,在經歷很短的一段隨機的時間後,被激發的原子就會回到原來能量較低的狀態。 在原子中,被激發的電子在回到能量較低的軌道時釋放出一個光子,也就是說這些能量將被以光的形式發射出來,於是產生了原子的發射光譜,亦即原子光譜。因為這種原子能態的變化是非連續量子性的,所產生的光譜也由一些不連續的亮線所組成,所以原子光譜又被稱作線狀光譜。[2]
由於每種元素都有自己的光譜,因此可根據光譜來鑒別物質和確定其化學組成,這種方法被稱作光譜分析。因為不同元素的光譜會有不同的位置的顏色的譜線,或者會缺少某些譜線,但含有相同元素的物質的譜線卻總是會在同一個位置具有相同顏色的譜線。光譜分析就是利用這個原理來分析物質的元素組成的。
錯視又稱視覺假像,是指通過幾何排列、視覺成像規律等手段,製作有視覺欺騙成分的圖像進行眼球欺騙,引起的視覺上的錯覺,達到藝術或者類似魔術般的效果。
錯視一般被分為:圖像本身的構造導致的幾何學錯視;由感覺器官引起的生理錯視;以及心理原因導致的認知錯視。特別是關於幾何學的錯視,以其種類多而廣為人知。
視覺上的大小、長度、面積、方向、角度等幾何構成,和實際上測得的數字有明顯差別的錯視,稱為幾何學錯視。
最早開始研究幾何學錯視,是在1855年Oppel所發表的分割距離錯視;即沒被分割的,看起來比分割的面積來的小。
主要來自人體的視覺適應現象,人的感覺器官在接受過久的刺激後會鈍化,也就造成了補色及殘像的生理錯視。由於白光是由不同波長的色光所組成的,所以任何兩種色光加在一起可成為白光者,這兩色就互為補色。
而視網膜上的細胞受某種色光刺激後,會對該色產生疲勞,所以在視線離開該色後,該部分的細胞暫無法作用,而未受刺激的另一部分細胞開始活動,因而產生另一種視感,也就是補色的殘像。
另外還有因為視覺疲勞而產生的視覺暫留現象也是,視覺暫留現象就是現今動畫的原理。
赫曼方格(Hermann grid illusion)和馬赫帶(Mach bands)是最常被用來解釋生理錯視的作品。
側抑制(lateral inhibition)一直被用來解釋為什麼我們在Mach bands中看到色塊交界處的色差。一旦受體被激活,這種刺激就會抑制它鄰近的受體被刺激後的效果。這種錯覺造成了相反及突出的邊緣。在Hermann的grid illusion十字路口出現了灰點是因為dark surround的增加而出現的抑制反應(inhibitory response)。[2]側抑制也被用來解釋赫曼的grid illusion,但最近已被反駁。(參考disproved)
這主要來自於人類的知覺恆常性屬於認知心理學的討論範圍。
知覺恆常性是造成許多錯視覺的原因,同化作用,兩張圖裡,左邊和右邊的底色其實都是一樣,不過因為受到前景的線條顏色的干擾,使人以為兩邊底色的深淺有所不同。色感一致性,color constancy和brightness constancy的事實,無論什麼亮度,一個熟悉的物體會出現相同的顏色。錯覺的色差可以創造的,但當周圍不熟悉的物體亮度改變就不能。當物體的顏色會出現較深的黑色區域,便會反比較淺色的白色區琙,即使物體本身並沒有改變顏色。
有許多專門在創作這類錯視幻覺的藝術家,包括毛瑞特斯·柯奈利斯·艾雪(M.C. Escher)、 Bridget Riley、薩爾瓦多·達利( Salvador Dalí)、朱塞佩·阿爾欽博托、 馬塞爾·杜象(Marcel Duchamp)、 Oscar Reutersvärd 及 Charles Allan Gilbert.
也有一些當代藝術家正在試驗一種錯覺,包括: Dick Termes, 福田繁雄, Patrick Hughes, István Orosz, Rob Gonsalves及北岡 明佳(Akiyoshi Kitaoka)等。另外,錯覺也能運用於電影中。
一些錯覺如Ponzo illusion及Vertical-horizontal illusions也可能發生於使用時由聽覺到視覺感官替代裝置。
互補色或補色是指某兩種特定的顏色,在繪畫美術、色彩或是光學系統中,該顏色與其「互補色」混合後將呈現特定效果。
四種主要的互補色為:
在疊加型的原色系統中,例如RGB系統,若兩種顏色等量混合時能產生白色,則該兩種顏色互為補色
在消減型的原色系統中,例如CMYK系統,若兩種顏色等量混合時產生接近黑色的濁褐色,則該兩種顏色互為補色
由於在絕大部份的美術歷史中,當時時代科技可做出的顏料有限,故此可以使用顏色亦有限。美術家或藝術家使用的傳統互補色是以視覺效果來定義的,在色相環中,顏色所在的位置恰好位於其互補色的對邊:
兩隻互補色在混合後會變成褐色或灰色。 在繪畫或是圖形設計上使用互補色是重要的技巧,適當使用補色能在視覺上產生突出的效果。
[來源請求]
廣義相對論是阿爾伯特·愛因斯坦於1916年發表的用幾何語言描述的重力理論,它代表了現代物理學中重力理論研究的最高水平。廣義相對論將古典的牛頓萬有引力定律包含在狹義相對論的框架中,並在此基礎上應用等效原理而建立。在廣義相對論中,重力被描述為時空的一種幾何屬性(曲率);而這種時空曲率與處於時空中的物質與輻射的能量-動量張量直接相聯繫,其聯繫方式即是愛因斯坦的重力場方程式(一個二階非線性偏微分方程式組)。
從廣義相對論得到的有關預言和古典物理中的對應預言非常不相同,尤其是有關時間流逝、空間幾何、自由落體的運動以及光的傳播等問題,例如重力場內的時間膨脹、光的重力紅移和重力時間延遲效應。廣義相對論的預言至今為止已經通過了所有觀測和實驗的驗證——雖說廣義相對論並非當今描述重力的唯一理論,它卻是能夠與實驗數據相符合的最簡潔的理論。不過,仍然有一些問題至今未能解決,典型的即是如何將廣義相對論和量子物理的定律統一起來,從而建立一個完備並且自洽的量子重力理論。
愛因斯坦的廣義相對論理論在天體物理學中有著非常重要的應用:它直接推導出某些大質量恆星會終結為一個黑洞——時空中的某些區域發生極度的扭曲以至於連光都無法逸出。有證據表明恆星質量黑洞以及超大質量黑洞是某些天體例如活動星系核和微類星體發射高強度輻射的直接成因。光線在重力場中的偏折會形成重力透鏡現象,這使得人們能夠觀察到處於遙遠位置的同一個天體的多個成像。廣義相對論還預言了重力波的存在,重力波已經被間接觀測所證實,而直接觀測則是當今世界像雷射干涉重力波天文台的重力波觀測計劃的目標。此外,廣義相對論還是現代宇宙學的膨脹宇宙模型的理論基礎。
1905年愛因斯坦發表狹義相對論後,他開始著眼於如何將重力納入狹義相對論框架的思考。以一個處在自由落體狀態的觀察者的理想實驗為出發點,他從1907年開始了長達八年的對重力的相對性理論的探索。在歷經多次彎路和錯誤之後,他於1915年11月在普魯士科學院上作了發言,其內容正是著名的愛因斯坦重力場方程式。這個方程式描述了處於時空中的物質是如何影響其周圍的時空幾何,並成為了愛因斯坦的廣義相對論的核心[1]。
愛因斯坦的重力場方程式是一個二階非線性偏微分方程式組,數學上想要求得方程式的解是一件非常困難的事。愛因斯坦運用了很多近似方法,從重力場方程式得出了很多最初的預言。不過很快天才的天體物理學家卡爾·史瓦西就在1916年得到了重力場方程式的第一個非平庸精確解——史瓦西度規,這個解是研究星體重力塌縮的最終階段,即黑洞的理論基礎。在同一年,將史瓦西幾何擴展到帶有電荷的質量的研究工作也開始進行,其最終結果就是萊斯納-諾斯特朗姆度規,其對應的是帶電荷的靜態黑洞[2]。1917年愛因斯坦將廣義相對論理論應用於整個宇宙,開創了相對論宇宙學的研究領域。考慮到同時期的宇宙學研究中靜態宇宙的學說仍被廣為接受,愛因斯坦在他的重力場方程式中添加了一個新的常數,這被稱作宇宙常數項,以求得和當時的「觀測」相符合[3]。然而到了1929年,哈柏等人的觀測表明我們的宇宙處在膨脹狀態,而相應的膨脹宇宙解早在1922年就已經由亞歷山大·弗里德曼從他的弗里德曼方程式(同樣由愛因斯坦場方程式推出)得到,這個膨脹宇宙解不需要任何附加的宇宙常數項。比利時牧師勒梅特應用這些解構造了宇宙大爆炸的最早模型,模型預言宇宙是從一個高溫高緻密狀態演化來的[4]。愛因斯坦其後承認添加宇宙常數項是他一生中犯下的最大錯誤[5]。
在那個時代,廣義相對論與其他物理理論相比仍保持了一種神秘感。由於它和狹義相對論相融洽,並能夠解釋很多牛頓重力無法解釋的現象,顯然它要優於牛頓理論。愛因斯坦本人在1915年證明了廣義相對論是如何解釋水星軌道的反常近日點進動的現象,其過程不需要任何附加參數(所謂「敷衍因子」)[6]。另一個著名的實驗驗證是由亞瑟·愛丁頓爵士率領的探險隊在非洲的普林西比島觀測到的日食時的光線在太陽重力場中的偏折[7],其偏折角度和廣義相對論的預言完全相符(是牛頓理論預言的偏折角的兩倍),這一發現隨後被全球報紙競相報導,一時間使愛因斯坦的理論名聲赫赫[8]。但是直到1960年至1975年間,廣義相對論才真正進入了理論物理和天體物理主流研究的視野,這一時期被稱作廣義相對論的黃金時代。物理學家逐漸理解了黑洞的概念,並能夠通過天體物理學的性質從類星體中識別黑洞[9]。在太陽系內能夠進行的更精確的廣義相對論的實驗驗證進一步展示了廣義相對論非凡的預言能力[10],而相對論宇宙學的預言也同樣經受住了實驗觀測的檢驗[11]。
理解廣義相對論的最佳方法之一是從古典力學出發比較兩者的異同點:這種方法首先需要認識到古典力學和牛頓重力也可以用幾何語言來描述,而將這種幾何描述和狹義相對論的基本原理放在一起對理解廣義相對論具有啟發性作用[12]。
古典力學的一個基本原理是:任何一個物體的運動都可看作是一個不受任何外力的自由運動(慣性運動)和一個偏離於這種自由運動的組合。這種偏離來自於施加在物體上的外力作用,其大小和方向遵循牛頓第二定律(外力大小等於物體的慣性質量乘以加速度,方向與加速度方向相同[13])。而慣性運動與時空的幾何性質直接相關:古典力學中在標準參考系下的慣性運動是勻速直線運動。用廣義相對論的語言說,慣性運動的軌跡是時空幾何上的最短路徑(測地線),在閔考斯基時空中是直的世界線[14]。
反過來,原則上講也可以通過觀察物體的運動狀態和外力作用(如附加的電磁力或摩擦力等)來判斷物體的慣性運動性質,從而用來定義物體所處的時空幾何。不過,當有重力存在時這種方法會產生一些含糊不清之處:牛頓萬有引力定律以及多個彼此獨立驗證的相關實驗表明,自由落體具有一個普遍性(這也被稱作弱等效原理,亦即慣性質量與質量#重力質量等價),即任何測試質量的自由落體的軌跡只和它的初始位置和速度有關,與構成測試質量的材質等無關[15]。這一性質的一個簡化版本可以通過愛因斯坦的理想實驗來說明,如右圖所示:對於一個處在狹小的封閉空間中的觀察者而言,無法通過觀測落下小球的運動軌跡來判斷自己是處於地面上的地球重力場中,還是處於一艘無重力作用但正在加速的火箭裡(加速度等於地球重力場的重力加速度)[16];而作為對比,處於電磁場中的帶電小球運動和加速參考系中的小球運動則是可以通過不同小球攜帶不同的電量來區分的。而由於重力場在空間中存在分布的變化,弱等效原理需要加上局部的條件,即在足夠小的時空區域內重力場中的自由落體運動和均一加速參考系中的慣性運動是完全相同的。
由於自由落體的普遍性,慣性運動(實驗中的火箭內)和在重力場中的運動(實驗中的地面上)是無法通過觀察來區分的。這是在暗示一類新的慣性運動的定 義,即在重力作用下的自由落體也屬於慣性運動。通過這種慣性運動則可以重新定義周圍的時空幾何——從數學上看重力場中慣性運動的軌跡(測地線)和重力勢的梯度有關。
牛頓重力的幾何理論儘管看上去很有趣,但這一理論的基礎古典力學不過是(狹義)相對論力學的一個特例[17]。用對稱的語言來說,在不考慮重力的情形下物理學具有勞侖茲不變性,而並非古典力學所具有的伽利略不變性。(狹義相對論的對稱性包含在龐加萊群中,它除了包含有勞侖茲變換所包含的勞侖茲遞升和旋轉外還包含平移不變性。)在研究對象的速度接近光速或者高能的情形下這兩者的區別逐漸變得明顯[18]。
在勞侖茲對稱性下可以引入光錐的概念(見左圖),光錐構成了狹義相對論中的因果結構: 對於每一個發生在時空中的事件A,原則上有能夠通過傳播速度小於光速的信號或交互作用影響到事件A或被事件A影響的一組事件(具有因果聯繫),例如圖中的 事件B;也有一組不可能互相影響的事件(不具有因果聯繫),例如圖中的事件C;而這些事件間有無因果聯繫都與觀測者無關[19]。將光錐和自由落體的世界線聯繫起來可以導出時空的半黎曼度規,或至少可以得到一個正的純量因子,在數學上這是共形結構的定義[20]。
狹義相對論的建立改變了人們對質量唯一性的觀念:質量不過是系統能量和動量的一種表現形式,這使得愛因斯坦著手將弱等效原理納入一個更廣泛的框架中:處於封閉空間中的觀察者無論採用什麼測量方法(而不僅限於投擲小球)都無法區分自己是處於重力場還是加速參考系中。這種概括成為了著名的愛因斯坦等效原理: 在足夠小的時空區域中物理定律退化成狹義相對論中的形式;而不可能通過局部的實驗來探測到周圍重力場的存在。狹義相對論是在不考慮重力的情況下建立的,因 此對於實際重力可以忽略的應用這是一個合適的模型。如果考慮重力的存在並假設愛因斯坦等效原理成立,則可知宇宙間不存在全局的慣性系,而只存在跟隨著自由 落體的粒子一起運動的局部近似慣性系。用時空彎曲的語言來說,是表徵了無重力作用的慣性系的直的類時世界線在實際時空中彼此會產生彎曲,這意味著重力的引入會改變時空的幾何結構[21]。愛因斯坦等效原理由此暗示重力作用應歸屬於時空彎曲的範疇,無加速度的慣性運動和重力作用下的自由落體具有完全相同的定義。
實驗數據表明,處於重力場中的時鐘測量出的時間——或者用相對論的語言稱為原時——並不服從狹義相對論定律的制約。用時空幾何的語言來說,這是由於所測量的時空並非閔考斯基度規。對於牛頓重力理論而言這暗示著一種更一般的幾何學。在微小尺度上所有處於自由落體狀態的參考系都是等效的,並且都可近似為閔考斯基性質的平直度規。而接下來我們正在處理的是對閔考斯基時空的彎曲化的一般性概括,所用到的度規張量定義的所在的時空幾何——具體說來是時空中的長度和角度是如何被測量的——並不是狹義相對論的閔考斯基度規,這種度規被概括地稱作半黎曼度規或偽黎曼度規。並且每一種黎曼度規都自然地與一種特別的聯絡相關聯,這種聯絡被稱作列維-奇維塔聯絡;事實上這種聯絡能夠滿足愛因斯坦等效原理的要求並使得時空具有局部的閔考斯基性(這是指在一個適合的局部慣性坐標系下度規是閔考斯基性的,其度規的導數和連接係數即克里斯托費爾符號都為零。)[22]。總體上可以歸納為,在愛因斯坦的理論中重力引起的時空彎曲是一種可微分流形,這種流形在局部是平直的,但整體上可能具有非常不同的全局幾何。
在建立了描述重力效應的相對論性幾何化版本後,還有一個關於重力的起源問題沒有解決。牛頓理論中的重力來源於質量,而在狹義相對論中質量的概念被包含在更具有一般性的能量-動量張量中。這個張量包含了對系統的能量和動量的密度,以及應力(即壓強和切應力的統稱)的描述[23],通過等效原理就可以將能量-動量張量概括到彎曲的時空幾何中去。如果和幾何化的牛頓重力作進一步的類比,可以很自然地通過一個場方程式將能量-動量張量和里奇張量聯繫起來,而里奇張量正描述了潮汐效應的一類特殊情形:一團初始狀態為靜止的測試粒子形成的雲的體積會由於這群測試粒子作自由落體運動而變化。在狹義相對論中,能量-動量張量的守恆律在數學上對應著它的散度為零,而這一守恆律也可以被概括到更一般的彎曲時空中,其方法是將古典的偏導數替換為它們在曲面流形上的對應物:協變導數。在這一附加條件下,能量-動量張量的協變散度,以及場方程式右邊所有可能出現的項統統為零,這一組簡潔的方程式表述被稱作愛因斯坦重力場方程式。
方程式左邊是一個由里奇張量構成的並且散度為零的特別組合,這種組合被稱作愛因斯坦張量。特別地,
是時空曲率的里奇純量。而里奇張量本身與更一般化的黎曼張量之間的關係為
方程式右邊的是能量-動量張量。將重力場方程式的理論和對行星軌道實際觀測的結果(或等價地考慮到弱場低速時近似為牛頓重力理論)相比較,可得到方程式中的比例常數,其中是萬有引力常數而是光速[24]。當沒有物質存在時能量-動量張量為零,這時的愛因斯坦場方程式的形式化簡為所謂真空解法:
某些廣義相對論的替代理論在基於同樣的前提下通過附加其他準則或約束得到了形式不一樣的重力場方程式,例如愛因斯坦-嘉當理論[25]。
前一章節概括介紹了確立廣義相對論的基本內容所需的全部信息,並指出了廣義相對論理論的幾個關鍵性質。那麼隨之而來的問題是,廣義相對論對物理學究竟有多重要的意義;具體說來,如何從廣義相對論理論建立具有應用價值的具體物理模型呢?
廣義相對論是重力的度規理論,其核心是愛因斯坦場方程式。場方程式描述的是用四維半黎曼流形所描述的時空幾何學,與處在時空中物質的能量-動量張量之間的關係[26]。古典力學中由重力引起的現象(例如自由落體、星體軌道運動、太空飛行器軌道等),在廣義相對論中對應著在彎曲時空中的慣性運動,即沒有所謂外來的重力使得物體的運動偏離它們原本的自然直線運動路徑。重力本身是時空屬性的幾何學改變,使處在其中的物體沿著時空中最短的路徑作慣性運動[27];而反過來時空的曲率是由處在時空中的物質的能量-動量張量改變的。用約翰·惠勒的話來解釋說:時空告訴物體如何運動,物體告訴時空如何彎曲[28]。
廣義相對論用一個對稱的二階張量替換了古典力學中的重力純量勢,不過前者在某些極限情形下會退化為後者。在弱重力場並且速度遠小於光速的前提下,相對論的結果和牛頓古典理論的結果是重合的[29]。
廣義相對論是用張量表示的,這是其廣義協變性的體現:廣義相對論的定律——以及在廣義相對論框架中得到的物理定律——在所有參考系中具有相同的形式[30]。並且,廣義相對論本身並不包含任何不變的幾何背景結構,這使得它能夠滿足更嚴格的廣義相對性原理:物理定律的形式在所有的觀察者看來都是相同的[31]。而廣義相對論認為在局部由於有等效原理的要求,時空是閔考斯基性的,物理定律具有局部勞侖茲不變性[32]。
廣義相對論性的模型建立的核心內容是愛因斯坦場方程式的解。在愛因斯坦場方程式和一個附加描述物質屬性的方程式(類似於馬克士威方程組和介質的本構方程式)同時已知的前提下,愛因斯坦場方程式的解包含有一個確定的半黎曼流形(通 常由特定坐標下得到的度規給出),以及一個在這個流形上定義好的物質場。物質和時空幾何一定滿足愛因斯坦場方程式,因此特別地物質的能量-動量張量的協變 散度一定為零。當然,物質本身還需要滿足描述其屬性的附加方程式。因此可以將愛因斯坦場方程式的解簡單理解為一個由廣義相對論制約的宇宙模型,其內部的物 質還同時滿足附加的物理定律[33]。
愛因斯坦場方程式是非線性的偏微分方程式組,因此想要求得其精確解十分困難[34]。儘管如此,仍有相當數量的精確解被求得,但只有一些具有物理上的直接應用[35]。其中最著名的精確解,同時也是從物理角度來看最令人感興趣的解包括史瓦西解、萊斯納-諾斯特朗姆解、克爾解,每一個解都對應著特定類型的黑洞模型[36];以及弗里德曼-勒梅特-羅伯遜-沃爾克解和德西特宇宙,每一個解都對應著一個膨脹的宇宙模型[37]。純粹理論上比較有趣的精確解還包括哥德爾宇宙(暗示了在彎曲時空中進行時間旅行的可能性)、Taub-NUT解(一種均勻卻又各向異性的宇宙模型)、反德西特空間(近年來由於超弦理論中的馬爾達西那假說的提出而變得知名)[38]。
尋找愛因斯坦場方程式的精確解並非易事,因此在更多場合下愛因斯坦場方程式的解是通過計算機採用數值積分的方法,或者對精確解作微擾求得的近似解。在數值相對論這一分支中,人們使用高性能的計算機來數值模擬時空幾何,以用於數值求解兩個黑洞碰撞等有趣場合下的愛因斯坦場方程式[39]。原則上只要計算機的運算能力足夠強大,數值相對論的方法就可以應用到任何系統中,從而有可能對裸奇異點等基礎問題做出解答。另一種求得近似解的方法是藉助於像線性化重力[40]和後牛頓力學近似方法這樣的微擾理論,這兩種微擾方法都是由愛因斯坦發展的,其中後者為求解時空內分布的物體速度遠小於光速時的時空幾何提供了系統的方法。後牛頓力學近似方法是一系列展開項,第一項對應著牛頓重力,而後面的微擾項對應著廣義相對論理論對牛頓力學所作的修正[41]。這種近似展開的一種擴展方法是參數化後牛頓形式,應用這種方法可以量化地比較廣義相對論和其替代理論的預言結果[42]。
廣義相對論對物理學的影響非常深遠,其引發了諸多理論和實驗的研究成果。其中一部分是從廣義相對論的定律中直接導出的,而有些則從廣義相對論發表至今經過長久的研究才逐漸變得明朗。
如果等效原理成立[43],則可得到重力會影響時間流逝的結論。射入重力勢阱中的光會發生藍移,而相反從勢阱中射出的光會發生紅移;歸納而言這兩種現象被稱作重力紅移。更一般地講,當有一個大質量物體存在時,對於同一個過程在距離大質量物體更近時會比遠離這個物體時進行得更慢,這種現象叫做重力時間膨脹[44]。
重力紅移已經在實驗室中[45]及在天文觀測中[46]得到證實和測量,而地球重力場中的重力時間延緩效應也已經通過原子鐘進行過多次測量[47]。當前的測量表明地球重力場的時間延緩會對全球定位系統(GPS)的運行產生一定影響[48]。這種效應在強重力場中的測試是通過對脈衝雙星的觀測完成的[49],所有的實驗結果都和廣義相對論相符[50]。不過在當前的測量精度下,人們還不能從中判斷這些觀測到底更支持廣義相對論還是同樣滿足等效原理的其他替代理論[51]。
廣義相對論預言光子的路徑在重力場中會發生偏折,即當光子途徑一個大質量物體時路徑會朝向物體發生彎曲。這種效應已經通過對來自遙遠恆星或類星體的光線途徑太陽時的路徑觀測得到證實[52]。
這種現象(以及其他相關現象)的原因是光具有被稱作類光的(或被稱作零性的)測地線——相對於在古典物理中光的傳播路線是直線,類光的(或零性的)測地線是廣義相對論的相應概括,來源於狹義相對論中的光速不變原理[53]。選取了合適的時空幾何(例如黑洞視界外的史瓦西解,或後牛頓展開項)[54]就可以進一步看到重力場對光的傳播的影響,這種影響是純粹廣義相對論性的。即是說儘管從古典力學出發,通過計算中心質量對光子的古典散射也可以得到光線的偏折效應[55],但從這種古典方法得到的偏折角度只有廣義相對論結果的一半。[56]
和光線偏折現象密切相關的另一現象是重力時間延遲效應(或稱作夏皮羅延遲效應),這種現象是指在重力場中光的傳播時間要比無重力場的情形下要長,這種效應已經被多個觀測成功證實[57]。在參數化後牛頓形式中,對光線偏折和對時間延遲的測量共同決定了一個參數,這個參數表徵了重力對時空幾何的影響[58]。
弱重力場和電磁場相比有一個重要類同之處:類似於隨時間變化的電磁場會輻射電磁波,重力場也有可能會輻射重力波。重力波有如時空度規的漣漪,以光速在空間中傳播[59]。最簡單的一類情形如右所示:排列成一個環狀的自由懸浮粒子(右上靜態圖像),當有一束正弦重力波穿過這個環並朝向讀者傳播時,重力波會將這個環以一種具有特徵性和旋律性的方式扭曲(右下動畫)[60]。由於愛因斯坦場方程式是非線性的,強重力場中的任意強度的重力波不滿足線性疊加原理。但在弱場情形下可採用線性近似,由於從遙遠的天體輻射出的重力波到達地球時已經非常微弱,這時線性化的重力波已經足以精確描述其到達地球時的強度,其引起的空間距離的相對變化大約在10-21或更低。這些線性化的重力波是可以進行傅立葉分解的,對這些重力波信號進行的數據分析正是基於這個原理[61]。
場方程式的個別精確解能夠在不藉助任何近似條件的前提下描述重力波,如一束傳遍整個空間的波列[62],以及所謂高蒂宇宙(多種充滿重力波的膨脹宇宙的總稱)[63]。不過對於天體物理學意義上的重力輻射而言,例如黑洞雙星的合併過程,後牛頓力學近似方法、微擾理論或數值相對論等近似途徑是僅有的處理手段[64]。
對於作軌道運動的物體,廣義相對論和古典力學的預言在很多地方有所不同。廣義相對論預言公轉星體的軌道會發生總體的旋轉(進動),而軌道本身也會由於重力輻射而發生衰減。
廣義相對論中,任意軌道的拱點(軌道上最接近或最遠離系統質心的點)會發生進動,這使得軌道不再是橢圓,而是一個繞著質心旋轉的准橢圓軌道,其總體上看接近於玫瑰線的形狀。愛因斯坦最早通過近似度規來表示牛頓力學的極限,並將軌道運動的物體看作一個測試質點從而在理論上得到了這一結果。這一結果的重要性在於,它能夠最簡潔地解釋天文學家勒維耶在1859年發現的水星近日點的反常進動,而這對於當時的愛因斯坦而言是最終確認重力場方程式的正確形式的一個重要依據[65]。
從精確的史瓦西度規[66]或採用更為一般的後牛頓力學近似形式[67]也能夠推導出這種效應。從本質上說,這種進動是由於重力對時空幾何的影響,以及對物體重力的自能量的貢獻(其意義包含在愛因斯坦場方程式的非線性中)[68]。現在已經觀測到了所有能夠進行精確軌道進動測量的太陽系行星(水星、金星、地球)的相對論進動[69],而且已經觀察到某些脈衝雙星系統的軌道進動效應,其效應要比太陽系內行星高出五個數量級[70]。
根據廣義相對論,一個雙星系統會通過重力輻射的形式損失能量。儘管這種能量損失一般相當緩慢,卻會使得雙星間的距離逐漸降低,同時降低的還有軌道周期。在太陽系內的兩體系統或者一般的雙星中,這種效應十分微弱因此難以觀測。然而對於一個密近脈衝雙星系統而言,在軌道運動中它們會發射極度規律的脈衝信號,地球上的接收者從而能夠將這個信號序列作為一個高度精確的時鐘。這個精確的時鐘是用來精確測量脈衝雙星軌道周期的最佳工具。並且由於組成脈衝雙星的恆星是中子星,其緻密性能導致有較多部分的能量以重力輻射的形式傳播出去[71]。
最早觀測到這種因重力輻射導致的軌道周期衰減的實驗是由赫爾斯和泰勒完成的,他們所觀測的脈衝雙星是他們於1974年發現的PSR 1913+16。這也是人類首次在實驗上證實重力波的存在,儘管這只是一種間接觀測,這項工作因此獲得1993年的諾貝爾物理學獎[72]。從那以後更多的脈衝雙星被發現,值得一提的是PSR J0737-3039,雙星系統的兩個成員都是脈衝星[73]。
有些相對論效應與坐標的方向性有關[74],其一是測地線效應,例如一個在彎曲時空中作自由落體運動的陀螺的自轉軸會因此而改變,即使陀螺的自轉軸方向在運動過程中儘可能保持一直穩定(即所謂在曲面上作「平行輸運」)[75]。地球-月球系統的測地線效應已經通過月球雷射測距實驗得到驗證[76]。近年來物理學者通過重力探測器B衛星測量測試質量在地球重力場中的測地線效應,其結果和理論值的誤差小於0.3%[77][78]。
在一個旋轉質量的周圍還會產生重力磁性以及更一般的參考系拖拽效應,觀察者會認為旋轉質量對周圍的時空產生拖拽效應,處於旋轉質量周圍的物體會因此發生坐標改變。一個極端的版本是旋轉黑洞的所謂能層區域,當有任何物體進入旋轉黑洞的能層時都會不可避免地隨著黑洞一起發生轉動[79]。理論上這種效應也可以通過觀察其對一個自由落體狀態的陀螺自轉方向的影響進行驗證[80]。在存在爭議的LAGEOS衛星實驗中參考系拖拽效應得到了初步證實[81]。火星全球探勘者號在火星獲得的數據資料,也被用來做廣義相對論的參考系拖拽實驗[82][83]。
重力場中光線的偏折效應是一類新的天文現象的原因。當觀測者與遙遠的觀測天體之間還存在有一個大質量天體,當觀測天體的質量和 相對距離合適時觀測者會看到多個扭曲的天體成像,這種效應被稱作重力透鏡[84]。受系統結構、尺寸和質量分布的影響,成像可以是多個,甚至可以形成被稱作愛因斯坦環的圓環,或者圓環的一部分弧[85]。最早的重力透鏡效應是在1979年發現的[86],至今已經發現了超過一百個重力透鏡[87]。即使這些成像彼此非常接近以至於無法分辨——這種情形被稱作微重力透鏡——這種效應仍然可通過觀測總光強變化測量到,很多微重力透鏡也已經被發現[88]。
重力透鏡已經發展成為觀測天文學的一個重要工具,它被用來探測宇宙間暗物質的存在和分布,並成為了用於觀測遙遠星系的天然望遠鏡,還可對哈柏常數做出獨立的估計。重力透鏡觀測數據的統計結果還對星繫結構演化的研究具有重要意義[89]。
對脈衝雙星的觀測是間接證實重力波存在的有力證據(參見上文軌道衰減一節),然而對來自宇宙深處的重力波的直接觀測始終未能實現,這也成為了相對論前沿研究的主要課題之一[90]。現在已經有相當數量的地面重力波探測器投入運行,最值得注目的干涉重力波探測器是GEO600、雷射干涉重力波天文台(包括三架雷射干涉重力波探測器)、TAMA300和VIRGO[91]歐洲獨立在太空中操作的雷射干涉探測器新重力波天文台現在正處於開發階段[92],其先行測試計劃LISA探路者(LISA Pathfinder)將於2014年底之前正式發射升空[93]。
對重力波的探測將在很大程度上擴展基於電磁波觀測的傳統觀測天文學的視野[94],人們能夠通過探測到的重力波信號了解到其波源的信息。這些從未被真正了解過的信息可能來自於黑洞、中子星或白矮星等緻密星體,可能來自於某些超新星爆發,甚至可能來自宇宙誕生極早期的暴脹時代的某些烙印,例如假想的宇宙弦[95]。
廣義相對論預言了黑洞的存在,即當一個星體足夠緻密時,其重力使得時空中的一塊區域極端扭曲以至於光都無法逸出。在當前被廣為接受的恆星演化模型中,一般認為大質量恆星演化的最終階段的情形包括1.4倍左右太陽質量的恆星演化為中子星,而數倍至幾十倍太陽質量的恆星演化為恆星質量黑洞[96]。具有幾百萬倍至幾十億倍太陽質量的超大質量黑洞被認為定律性地存在於每個星系的中心[97],一般認為它們的存在對於星系及更大的宇宙尺度結構的形成具有重要作用[98]。
在天文學上緻密星體的最重要屬性之一是它們能夠極有效率地將重力能量轉換為電磁輻射[99]。恆星質量黑洞或超大質量黑洞對星際氣體和塵埃的吸積過程被認為是某些非常明亮的天體的形成機制,著名且多樣的例子包括星系尺度的活動星系核以及恆星尺度的微類星體[100]。在某些特定場合下吸積過程會在這些天體中激發強度極強的相對論性噴流,這是一種噴射速度可接近光速的[101]且方向性極強的高能電漿束。在對這些現象進行建立模型的過程中廣義相對論都起到了關鍵作用[102],而實驗觀測也為支持黑洞的存在以及廣義相對論做出的種種預言提供了有力證據[103]。
黑洞也是重力波探測的重要目標之一:黑洞雙星的合併過程可能會輻射出能夠被地球上的探測器接收到的某些最強的重力波信號,並且在雙星合併前的啁啾信號可以被當作一種「標準燭光」從而來推測合併時的距離,並進一步成為在大尺度上探測宇宙膨脹的一種手段[104]。而恆星質量黑洞等小質量緻密星體落入超大質量黑洞的這一過程所輻射的重力波能夠直接並完整地還原超大質量黑洞周圍的時空幾何信息[105]。
現代的宇宙模型是基於帶有宇宙常數的愛因斯坦場方程式建立的,宇宙常數的值對大尺度的宇宙動力學有著重要影響。
這個經修改的愛因斯坦場方程式具有一個各向同性並均勻的解:弗里德曼-勒梅特-羅伯遜-沃爾克度規[106],在這個解的基礎上物理學家建立了從一百四十億年前熾熱的大爆炸中演化而來的宇宙模型[107]。只要能夠將這個模型中為數不多的幾個參數(例如宇宙的物質平均密度)通過天文觀測加以確定[108],人們就能從進一步得到的實驗數據檢驗這個模型的正確性[109]。這個模型的很多預言都是成功的,這包括太初核合成時期形成的化學元素初始丰度[110]、宇宙的大尺度結構[111]以及早期的宇宙溫度在今天留下的「迴音」:宇宙微波背景輻射[112]。
從天文學觀測得到的宇宙膨脹速率可以進一步估算出宇宙中存在的物質總量,不過有關宇宙中物質的本性還是一個有待解決的問題。現在估計宇宙中大約有90%以上的物質都屬於暗物質,它們具有質量(即參與重力交互作用),但不參與電磁交互作用,即它們無法(通過電磁波)直接觀測到[113]。目前在已知的粒子物理[114]或其他什麼理論[115]的框架中還沒有辦法對這種物質做出令人滿意的描述。另外,對遙遠的超新星紅移的觀測以及對宇宙微波背景輻射的測量顯示,我們的宇宙的演化過程在很大程度上受宇宙常數值的影響,而正是宇宙常數的值決定了現在宇宙的加速膨脹。換句話說,宇宙的加速膨脹是由具有非通常意義下的狀態方程式的某種能量形式決定的,這種能量被稱作暗能量,其本性也仍然不為所知[116]。
在所謂暴脹模型中,宇宙曾在誕生的極早期(~10-33秒)經歷了劇烈的加速膨脹過程[117]。這個在於1980年代提出的假說是由於某些令人困惑並且用古典宇宙學無法解釋的觀測結果而提出的,例如宇宙微波背景輻射的高度各向同性[118],而現在對微波背景輻射各向異性的觀測結果是支持暴脹模型的證據之一[119]。然而,暴脹的可能的方式也是多樣的,現今的觀測還無法對此作出約束[120]。一個更大的課題是關於極早期宇宙的物理學的,這涉及到發生在暴脹之前的、由古典宇宙學模型預言的大爆炸奇異點。對此比較有權威性的意見是這個問題需要由一個完備的量子重力理論來解答,而這個理論至今還沒有建立[121](參見下文量子重力)。
在廣義相對論中沒有任何有靜止質量的物體能夠追上或超過一束光脈衝,即是說發生於某一點的事件A在光從那一點傳播到空間中任意位置X之前無法對位置X產生影響。因此,一個時空中所有光的世界線(零性測地線)包含了有關這個時空的關鍵因果結構信息。描述這種因果結構的是潘洛斯-卡特圖,在這種圖中無限大的空間區域和時間間隔通過共形變換被「收縮」(數學上稱為緊化)在可被容納的有限時空區域內,而光的世界線仍然和在閔考斯基圖中一樣用對角線表示[122]。
潘洛斯和其他研究者注意到因果結構的重要性,從而發展了所謂全局幾何。全局幾何中研究的對象不再是愛因斯坦場方程式的一個個特定解(或一族解),而是運用一些對所有測地線都成立的關係,如Raychaudhuri方程式,以及對物質本性的非特異性假設(通常用所謂能量條件的形式來表述)來推導普適性結論[123]。
在全局幾何下可以證明有些時空中存在被稱作視界的分界線,它們將時空中的一部分區域隔離起來。這樣的最著名例子是黑洞:當質量被壓縮到空間中的一塊足夠小的區域中後(相關長度為史瓦西半徑[124]),沒有光子能從內部逸出。而由於任何有質量的粒子速度都無法超過光速,黑洞內部的物質也被封閉在視界內。不過,從視界之外到視界之內的通道依然是存在的,這表明黑洞的視界作為一種分界線並不是物理性質的屏障[125]。
早期的黑洞研究主要依賴於求得愛因斯坦場方程式的精確解,著名的解包括球對稱的史瓦西解(用來描述靜態黑洞)和反對稱的克爾解(用來描述旋轉定態黑洞,並由此引入了能層等有趣的屬性)。而後來的研究通過全局幾何揭示了更多的關於黑洞的普適性質:研究表明經過一段相當長的時間後黑洞都逐漸演化為一類相當簡單的可用十一個參數來確定的星體,包括能量、動量、角動量、某一時刻的位置和所帶電荷。這一性質可歸納為黑洞的唯一性定理:「黑洞沒有毛髮」,即黑洞沒有像人類的不同髮型那樣的不同標記。例如,星體經過重力塌縮形成黑洞的過程非常複雜,但最終形成的黑洞的屬性卻相當簡單[126]。
更值得一提的是黑洞研究已經得到了一組制約黑洞行為的一般性定律,這被稱作黑洞(熱)力學,這些定律與熱力學定律有很強的類比關係。例如根據黑洞力學的第二定律,一個黑洞的視界面積永不會自發地隨著時間而減少,這類似於一個熱力學系統的熵;這個定律也決定了通過古典方法(例如,潘洛斯過程)不可能從一個旋轉黑洞中無限度地抽取能量[127]。這些都強烈暗示了黑洞力學定律實際是熱力學定律的一個子集,而黑洞的表面積和它的熵成正比[128]。從這個假設可以進一步修正黑洞力學定律。例如,由於黑洞力學第二定律是熱力學第二定律的一部分,則可知黑洞的表面積也有可能減小,只要有某種其它過程來保證系統的總熵是增加的。而熱力學第三定律認為不存在溫度為絕對零度的物體,可以進一步推知黑洞應該也存在熱輻射;半古典理論計算表明它們確實存在有熱輻射,在這個機制中黑洞的表面重力充當著普朗克黑體輻射定律中溫度的角色,這種輻射稱作霍金輻射(參見下文量子理論一節)[129]。
廣義相對論還預言了其他類型的視界模型:在一個膨脹宇宙中,觀察者可能會發現過去的某些區域不能被觀測(所謂「粒子視界」),而未來的某些區域不能被影響(事件視界)[130]。即使是在平直的閔考斯基時空中,當觀察者處於一個加速的參考系時也會存在視界,這些視界也會伴隨有半古典理論中的盎魯輻射[131]。
廣義相對論的另一個普遍卻又令人困擾的特色問題是時空的分界線——奇異點的出現。時空可以通過沿著類時和類光的測地線來 探索,這些路徑是光子及其他所有粒子在自由落體運動中的可能軌跡,但愛因斯坦場方程式的某些解具有「粗糙的邊緣」——這被稱作時空奇異點,這些奇異點上類 時或類光的測地線會突然中止,而對於這些奇異點沒有定義好的時空幾何來描述。需要說明的是,「奇異點」往往可能並不是一個「點」:那些場方程式的解的「粗 糙邊緣」在既有坐標系下,不僅可能是一個「點」,還可以以其他幾何形式出現(比如克爾黑洞的「奇環」等)。一般意義上的奇異點是指曲率奇異點,這是說在這 些點上描述時空曲率的幾何量,例如里奇張量為無限大[132](曲率奇異點是相對所謂坐標奇異點而言的,坐標奇異點本質上不屬於奇異點的範疇:有些度規在某個特定坐標下會產生無窮大,但本質上這些點不具有奇性,在其他合適的坐標下是光滑的,也不會產生無窮大的曲率張量)。描述未來的奇異點(世界線的終結)的著名例子包括永遠靜態的史瓦西黑洞內部的奇異點[133],以及永遠旋轉的克爾黑洞內部的環狀奇異點[134]。弗里德曼-勒梅特-羅伯遜-沃爾克度規,以及其他描述宇宙的時空幾何都具有過去的奇異點(世界線的開端),這被稱作大爆炸奇異點,而有些還具有未來的奇異點(大擠壓)[135]。
考慮到這些模型都是高度對稱從而被簡化的,人們很容易去猜測奇異點的出現是否只是理想狀態下的不自然產物。然而著名的由全局幾何證明的奇異點定理指出,奇異點是廣義相對論的一個普遍特色結果,並且任何有質量的實體發生重力塌縮並達到一個特定階段後都會形成奇異點[136],而在一系列膨脹宇宙模型中也一樣存在奇異點[137]。不過奇異點定理的內容基本沒有涉及到奇異點的性質,這些關於確定奇異點的一般結構(例如所謂BKL假說)的問題是當前相關研究的主要課題[138]。另一方面,由於在對於物理規律的破壞方面而言,一個被包裹於視界之中的奇異點被認為要好過一個「裸」的奇異點,故而宇宙監督假說被提出,它認為所有未來的實際奇異點(即沒有完美對稱性的具有實際性質的物體形成的奇異點)都會被藏在視界之內,從而對外面對觀察者不可見,即自然界憎恨裸奇異點。儘管還沒有實際證據證明這一點,有數值模擬的結果支持這一假說的正確性[139]。
每一個愛因斯坦場方程式的解都是一個宇宙,這裡的宇宙含義既包括了整個空間,也包括了過去與未來——它們並不單單是反映某些事物的「快照」,而是所描述的時空的完全寫真。每一個解在其專屬的特定宇宙中都能描述任意時間和任意位置的時空幾何和物質狀態。出於這個表徵,愛因斯坦的理論看上去與其他大多數物理理論有所不同:大多數物理理論都需要指明一個物理系統的演化方程式(例如量子力學中的埃倫費斯特定理),即如果一個物理系統在給定時刻的狀態已知,其演化方程式能夠允許描述系統在過去和未來的狀態。愛因斯坦理論中的重力場和其他場的更多區別還在於前者是自身交互作用的(是指它在沒有其他場出現時仍然還是非線性的),並且不具有固定的背景結構(在宇宙尺度上會發生演化)[140]。
為了更好地理解愛因斯坦場方程式這個與時間有關的偏微分方程式,可以將它寫成某種能夠描述宇宙隨時間演化的形式。這種形式被稱作「3+1」分解,其中時空被分為三維空間和一維時間。最著名的形式叫做ADM形式[141],在這種分解下廣義相對論的時空演化方程式具有良好的性質:在適當的初始條件給定的情形下方程式有解並且是唯一的[142]。場方程式的「3+1」分解形式是數值相對論的研究基礎[143]。
演化方程式的觀念與廣義相對論性物理中的另一個方面緊密聯繫:在愛因斯坦的理論中,一個系統的總質量(或能量)這個看似簡單的概念無法找到一種普遍性的定義。其原因在於,重力場原則上並不像其他的場那樣具有可以局域化的能量[144]。
儘管如此,試圖通過其他途徑來定義一個系統的總質量還是可能的,在古典物理中,質量(或能量)的定義可以來自時間平移不變性的守恆量,或是通過系統的哈密頓形式。在廣義相對論中,從這兩種途徑出發可以分別得到如下質量的定義:
如果將一個系統的總質量中被重力波攜帶至無限遠處的能量除去,得到的結果叫做零性無限遠處的邦迪質量[147]。這些定義而來的質量被舍恩和丘成桐的正質量定理證明是正值[148],而動量和角動量也具有全局的相應定義[149]。在這方面的研究中還有很多試圖建立所謂准局部量的嘗試,例如僅通過一個孤立系統所在的有限空間區域中包含的物理量來構造這個孤立系統的質量。這類嘗試寄希望於能夠找到一個更好地描述孤立系統的量化方式,例如環假說的某種更精確的形式[150]。
如果說廣義相對論是現代物理學的兩大支柱之一,那麼量子理論作為我們藉此了解基本粒子以及凝聚態物理的基礎理論就是現代物理的另一支柱[151]。然而,如何將量子理論中的概念應用到廣義相對論的框架中仍然是一個未能解決的問題。
作為現代物理中粒子物理學的基礎,通常意義上的量子場論是建立在平直的閔考斯基時空中的,這對於處在像地球這樣的弱重力場中的微觀粒子的描述而言是一個非常好的近似[152]。而在某些情形中,重力場的強度足以影響到其中的量子化的物質但不足以要求重力場本身也被量子化,為此物理學家發展了彎曲時空中的量子場論。這些理論藉助於古典的廣義相對論來描述彎曲的背景時空,並定義了廣義化的彎曲時空中的量子場理論[153]。通過這種理論,可以證明黑洞也在通過黑體輻射釋放出粒子,這即是霍金輻射,並有可能通過這種機制導致黑洞最終蒸發[154]。如前文所述,霍金輻射在黑洞熱力學的研究中起到了關鍵作用[155]。
物質的量子化描述和時空的幾何化描述之間彼此不具有相容性[156],以及廣義相對論中時空曲率無限大(意味著其結構成為微觀尺度)的奇異點的出現,這些都要求著一個完整的量子重力理論的建立。這個理論需要能夠對黑洞內部以及極早期宇宙的情形做出充分的描述,而其中的重力和相關的時空幾何需要用量子化的語言來敘述[157]。儘管物理學家為此做出了很多努力,並有多個有潛質的候選理論已經發展起來,至今人類還沒能得到一個稱得上完整並自洽的量子重力理論[158]。
量子場論作為粒子物理的基礎已經能夠描述除重力外的其餘三種基本交互作用,但試圖將重力概括到量子場論的框架中的嘗試卻遇到了嚴重的問題。在低能區域這種嘗試取得了成功,其結果是一個可被接受的重力的有效(量子)場理論[159],但在高能區域得到的模型是發散的(不可重整化)[160]。
試圖克服這些限制的嘗試性理論之一是弦論,在這種量子理論中研究的最基本單位不再是點狀粒子,而是一維的弦[161]。弦論有可能成為能夠描述所有粒子和包括重力在內的基本交互作用的大統一理論[162],其代價是導致了在三維空間的基礎上生成六維的額外維度等反常特性[163]。在所謂第二次超弦革命中,人們猜測超弦理論,以及廣義相對論與超對稱的統一即所謂超重力[164],能夠構成一個猜想的十一維模型的一部分,這種模型叫做M理論,它被認為能夠建立一個具有唯一性定義且自洽的量子重力理論[165]。
另外一種嘗試來自於量子理論中的正則量子化方法。應用廣義相對論的初值形式(參見上文演化方程式一節),其結果是惠勒-得衛特方程式(其作用類似於薛丁格方程式)。雖然這個方程式在一般情形下定義並不完備[166],但在所謂阿西特卡變數的引入下[167],從這個方程式能夠得到一個很有前途的模型:迴圈量子重力。在這個理論中空間是一種被稱作自旋網路的網狀結構,並在離散的時間中演化[168]。
取決於廣義相對論和量子理論中的哪些性質可以被接受保留,並在什麼能量量級上需要引入變化[169],對量子重力的嘗試理論還有很多,例如動力三角剖分[170]、因果組合[171]、扭量理論[172]以及基於路徑積分的量子宇宙學模型[173]。
所有這些嘗試性候選理論都仍有形式上和概念上的主要問題需要解決,而且它們都在面臨一個共同的問題,即至今還沒有辦法從實驗上驗證量子重力理論的預 言,進而無法通過多個理論之間某些預言的不同來判別其正確性。在這個意義上,量子重力的實驗觀測還需要寄希望於未來的宇宙學觀測以及相關的粒子物理實驗逐 漸成為可能[174]。
在重力和宇宙學的研究中,廣義相對論已經成為了一個高度成功的模型,至今為止已經通過了每一次意義明確的觀測和實驗的檢驗。然而即便如此,仍然有證據顯示這個理論並不是那麼完善的[175]:對量子重力的尋求以及時空奇異點的現實性問題依然有待解決[176];實驗觀測得到的支持暗物質和暗能量存在的數據結果也在暗暗呼喚著一種新物理學的建立[177];而從先驅者號觀測到的反常效應也許可以用已知的理論來解釋,也許則真的是一種新物理學來臨的預告[178]。不過,廣義相對論之中仍然充滿了值得探索的可能性:數學相對論學家正在尋求理解奇異點的本性,以及愛因斯坦場方程式的基本屬性[179];不斷更新的電腦正在進行黑洞合併等更多的數值模擬[180];而第一次直接觀測到重力波的競賽也正在前進中[181],人類希望藉此能夠在比至今能達到的強得多的重力場中創造更多檢驗這個理論的正確性的機會[182]。在愛因斯坦發表他的理論九十多年之後,廣義相對論依然是一個高度活躍的研究領域[183]。
q:
從等效原理(1907年)開始,到後來(1912年前後)發展出「宇宙中一切物質的運動都可以用曲率來描述,重力場實際上是彎曲時空的表現」的思想,愛因斯坦歷經漫長的試誤過程,於1916年11月25日寫下了重力場方程式而完成廣義相對論。這條方程式稱作愛因斯坦重力場方程式,或簡為愛因斯坦場方程式或愛因斯坦方程式:
該方程式是一個以時空為自變數、以度規為因變數的帶有橢圓型約束的二階雙曲型偏微分方程式。球面對稱的準確解稱史瓦西解。
場方程式的一個重要結果是遵守局域的(local)能量與動量守恆,透過應力-能量張量(代表能量密度、動量密度以及應力)可寫出:
場方程式左邊(彎曲幾何部份)因為和場方程式右邊(物質狀態部份)僅成比例關係,物質狀態部份所遵守的守恆律因而要求彎曲幾何部份也有相似的數學結果。透過微分比安基恆等式,以描述時空曲率的里奇張量(以及張量縮併後的里奇純量)之代數關係所設計出來的愛因斯坦張量可以滿足這項要求:
愛因斯坦場方程式的非線性特質使得廣義相對論與其他物理學理論迥異。舉例來說,電磁學的馬克士威方程組跟電場、磁場以及電荷、電流的分佈是呈線性關係(亦即兩個解的線性疊加仍然是一個解)。另個例子是量子力學中的薛丁格方程式,對於機率波函數也是線性的。
透過弱場近似以及慢速近似,可以從愛因斯坦場方程式退化為牛頓重力定律。事實上,場方程式中的比例常數是經過這兩個近似,以跟牛頓重力理論做連結後所得出。
愛因斯坦為了使宇宙能呈現為靜態宇宙(不動態變化的宇宙,既不膨脹也不收縮),在後來又嘗試加入了一個常數相關的項於場方程式中,使得場方程式形式變為:
可以注意到這一項正比於度規張量,而維持住守恆律:
此一常數被稱為宇宙常數。
這個嘗試後來因為兩個原因而顯得不正確且多此一舉:
因此,項在之後被捨棄掉,且愛因斯坦稱之為「一生中最大的錯誤」("biggest blunder [he] ever made")[1]。之後許多年,學界普遍設宇宙常數為0。
儘管最初愛因斯坦引入宇宙常數項的動機有誤,將這樣的項放入場方程式中並不會導致任何的不一致性。事實上,近年來天文學研究技術上的進步發現,要是存在不為零的確實可以解釋一些觀測結果。[2] [3]
愛因斯坦當初將宇宙常數視為一個獨立參數,不過宇宙常數項可以透過代數運算移動到場方程式的另一邊,而將這一項寫成應力-能量張量的一部分:
剛才提到的項即可定義為:
而另外又可以定義常數
為「真空能量」密度。宇宙常數的存在等同於非零真空能量的存在;這些名詞前在廣義相對論中常交替使用。也就是說可以將看成和是一樣類型的量,只是的來源是物質與輻射,而的來源則是真空能量。物質、輻射與真空能量三者在物理宇宙學中扮演要角。
若能量-動量張量在所關注的區域中為零,則場方程式被稱作真空場方程式。在完整的場方程式中設定,則真空場方程式可寫為:
對此式做張量縮併,亦即使指標μ跟ν相同:
由於,整理可得:
而克羅內克爾δ在四維空間(時空)下取跡數為4,所以式子可寫作:
是故。
因此可以得到此一更常見、等價的跡數反轉(trace-reversed)式:
若宇宙常數不為零,則方程式為
若同上面宇宙常數為零的例子,其跡數反轉(trace-reversed)形式為
真空場方程式的解顧名思義稱作真空解。平直閔可夫斯基時空是最簡單的真空解範例。不尋常的真空解範例包括了史瓦西解與克爾解。
附帶一提的是:微分幾何中,里奇張量為零(即:)的流形稱作里奇平坦流形,另外里奇張量與度規成比例關係的流形,稱為愛因斯坦流形(Einstein manifold)。
重力透鏡效應(gravitational lens),根據廣義相對論,就是當背景光源發出的光在重力場(比如 星系、星系團及黑洞)附近經過時,光線會像通過透鏡一樣發生彎曲。光線彎曲的程度主要取決於重力場的強弱。分析背景光源的扭曲,可以幫助研究中間做為「透鏡」的重力場的性質。根據強弱的不同,重力透鏡現象可以分為強重力透鏡效應和弱重力透鏡效應。
一般從數學上來講,面質量密度()大於1的為強重力透鏡區域,小於1的為弱重力透鏡區域。在強透鏡區域一般可以形成多個背景源的像,甚至圓弧(又稱「愛因斯坦環」,Einstein Ring),而弱透鏡區域則只產生比較小的扭曲。強透鏡方法通過對愛因斯坦環的曲率和多個像的位置的分析,可以估計測量透鏡天體質量。弱透鏡方法通過對大量背景源像的統計分析,可以估算大尺度範圍天體質量分布,並被認為是現在宇宙學中最好的測量暗物質的方法。
1979年,天文學家觀測到類星體Q0597+561發出的光在它前方的一個星系的重力作用下彎曲,形成了一個一模一樣的類星體的像。這是人類第一次觀察到重力透鏡效應。